O período Edo (1603 – 1868) é marcado pelo período em que o Japão governado pelos xoguns, isolado do mundo ocidental, foram desenvolvendo conhecimentos e habilidades matemáticos e astrológicos, criando um sistema de contagem decimal em potencias de 10, um calendário baseado nos movimentos da lua e sol (lunissolar) , aprimorando as habilidades na aplicação do soroban.
A figura mostra um calendário lunisolar Jokyo usado em 1684 a 1753.
A figura mostra a edição de 1641, conhecido como Jinkoki, apresentando um texto sobre o soroban.
Escrito na antiga forma de escrita japonesa conhecida como Kanbun, as placas de madeira conhecidas como Sangaku (ou San Gaku) eram penduradas nos templos e santuários xintoístas japoneses apresentando problemas geométricos, aritméticos e algébricos [1], nem sempre com geometria planas , mas também com objetos tridimensionais, tinha como uma das funções estimular e propagar o conhecimento matemático entre adultos e crianças, levando o Japão a um grande desenvolvimento intelectual matemático.
[1] Aritmética é uma operação matemática relacionada aos sistemas numéricos e suas operações ( soma, subtração, divisão, multiplicação, potenciação, radiciação, etc)
Álgebra: lida com letras, símbolos e números, tratando das equações, polinômios e estruturas algébricas
Geometria: é o ramo da matemática que trata do estudo das figuras e do espaço.
A origem do Sangaku em placas de madeira estão associadas a Ema que são pequenas placas de madeira, comuns no Japão, nas quais os adoradores xintoístas e budistas escrevem orações ou desejos e são deixados pendurados no santuário, onde acredita-se que os Deuses os recebam.
As placas exibiam imagens de cavalos . Os cavalos costumavam ser sacrificados aos deuses, mas eram caros e por isso as pessoas começaram a dedicar as imagens.
As pessoas acreditavam que se dedicando um Sangaku para os Deuses, estes poderiam dar-lhe boa sorte.
Placa de madeira com Sangaku de 1854 (173x82cm) pendurado na prefeitura Mie.
Sangaku de 1885 pendurado na prefeitura de Fukushima, mede 5,6 por 2,4 pés.













Um problema típico de Sangaku de 1824 , pendurado na prefeitura Gunma:
Três círculos tangentes com uma linha tangente comum .
Dados os raios do círculo branco e vermelho. Qual é o raio do círculo amarelo?

Solução:

No Autocad é possivel resolver com o comando Circle TTR no Autocad .
